Targeting DNA repair in chronic lymphocytic leukemia cells with a novel acyclic nucleotide analogue, GS-9219.
نویسندگان
چکیده
PURPOSE GS-9219 is a cell-permeable prodrug of the acyclic nucleotide analogue 9-(2-phosphonylmethoxyethyl)guanine (PMEG); the incorporation of the active metabolite PMEG diphosphate (PMEGpp) into DNA results in DNA chain termination due to the lack of a 3'-hydroxyl moiety. We hypothesized that the incorporation of PMEGpp into DNA during repair resynthesis would result in the inhibition of DNA repair and the accumulation of DNA breaks in chronic lymphocytic leukemia (CLL) cells that would activate signaling pathways to cell death. EXPERIMENTAL DESIGN To test this hypothesis, CLL cells were irradiated with UV light to stimulate nucleotide excision repair pathways, enabling the incorporation of PMEGpp into DNA. The combination effects of GS-9219 and DNA-damaging agents and the signaling mechanisms activated in response to DNA repair inhibition by GS-9219, as well as changes in CLL cell viability, were investigated. RESULTS PMEGpp was incorporated into DNA in CLL cells when nucleotide excision repair was activated by UV. Following PMEGpp incorporation, DNA repair was inhibited, which led to the accumulation of DNA strand breaks. The presence of DNA strand breaks activated the phosphatidylinositol 3-kinase-like protein kinase family members ataxia-telangiectasia mutated and DNA-dependent protein kinase. P53 was phosphorylated and stabilized in response to the inhibition of DNA repair. P53 targeted proteins, Puma and Bax, were up-regulated and activated. The combination of GS-9219 and DNA-damaging agents resulted in more cell death than the sum of the single agents alone. CONCLUSION GS-9219 inhibits DNA repair in CLL cells, an action that stimulates signaling pathways for apoptosis induction.
منابع مشابه
Cancer Therapy: Preclinical Targeting DNA Repair in Chronic Lymphocytic Leukemia Cells with a Novel Acyclic Nucleotide Analogue, GS-9219
Purpose: GS-9219 is a cell-permeable prodrug of the acyclic nucleotide analogue 9(2-phosphonylmethoxyethyl)guanine (PMEG); the incorporation of the active metabolite PMEG diphosphate (PMEGpp) into DNA results in DNA chain termination due to the lack of a 3′-hydroxyl moiety. We hypothesized that the incorporation of PMEGpp into DNA during repair resynthesis would result in the inhibition of DNA ...
متن کاملGS-9219--a novel acyclic nucleotide analogue with potent antineoplastic activity in dogs with spontaneous non-Hodgkin's lymphoma.
PURPOSE GS-9219, a novel prodrug of the nucleotide analogue 9-(2-phosphonylmethoxyethyl)guanine (PMEG), was designed as a cytotoxic agent that preferentially targets lymphoid cells. Our objective was to characterize the antiproliferative activity, pharmacokinetics, pharmacodynamics, and safety of GS-9219. EXPERIMENTAL DESIGN GS-9219 was selected through screening in proliferation assays and t...
متن کاملGS-9219/VDC-1101 - a prodrug of the acyclic nucleotide PMEG has antitumor activity inspontaneous canine multiple myeloma
BACKGROUND Multiple myeloma (MM) is an important human and canine cancer for which novel therapies remain necessary. VDC-1101 (formerly GS-9219), a novel double prodrug of the anti-proliferative nucleotide analog 9-(2-phosphonylmethoxyethyl) guanine (PMEG), possesses potent cytotoxic activity in vitro in human lymphoblasts and leukemia cell lines and in vivo in spontaneous canine lymphoma. Give...
متن کاملMonitoring of Serum Nitric oxide in Patients with Acute Leukemia
Nitric oxide (NO) is a molecule required for many physiological functions, produced from L-arginine by NO synthases (NOS). It is a free radical, producing many reactive intermediates that account for its bioactivity. Sustained induction of the inducible form of NOS (iNOS) in chronic inflammation may be mutagenic, through NO-mediated DNA damage or hindrance to DNA repair, and thus potentially ca...
متن کاملMonitoring of Serum Nitric oxide in Patients with Acute Leukemia
Nitric oxide (NO) is a molecule required for many physiological functions, produced from L-arginine by NO synthases (NOS). It is a free radical, producing many reactive intermediates that account for its bioactivity. Sustained induction of the inducible form of NOS (iNOS) in chronic inflammation may be mutagenic, through NO-mediated DNA damage or hindrance to DNA repair, and thus potentially ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2009